
Stat 534: formulae referenced in lecture, week 5, part 2:
Overparameterized models and models accounting for individual heterogeneity

Corrected, 30 Sept 21

Mtb: both behavioural response and time-dependent capture probabilities

• Our first encounter with an overparameterized mark-recapture model

• For 3 occasions: 6 parameters, 3 p’s, 2 c’s (no c1) and 1 N

• Let’s work out the capture probabilities

Time
1 2 3 # animals probability
Y Y Y n111 p1c2c3

Y Y N n110 p1c2(1− c3)
Y N Y n101 p1(1− c2)c3

Y N N n100 p1(1− c2)(1− c3)
N Y Y n011 (1− p1)p2c3

N Y N n010 (1− p1)p2(1− c3)
N N Y n001 (1− p1)(1− p2)p3

N N N n000 (1− p1)(1− p2)(1− p3)

• Nothing looks amiss here, so let’s count sufficient statistics

• based on the patterns for Mt and Mb, you would expect:

– ni: number caught at time i

– mi: number marked caught at time i

– Mt+1: total number of unique individuals seen

• Looks like 6 sufficient statistics, enough to estimate 6 parameters

• But: Mt+1 is not “new” information. It can be computed from ni and mi

– # 1st seen at time 1 + # first seen at time 2 + # first seen at time 3

– = n1 + (n2 −m2) + (n3 −m3)

• so no unique solution! Many sets of parameters have the same lnL

• Sometimes can spot redundancy by examining the capture history probabilities

• Have a problem when two parameters only appear multiplied or added together, e.g.
θ1θ2 or θ1 + θ2

• Numerical assessments:
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– look at the rank of the negative Hessian matrix (= # non-zero eigenvalues)

– often, use very small (e.g., < 0.005) because of numerical issues computing the
Hessian

– For one particular data set, the eigenvalues were:
44.1339 25.0000 20.8004 18.6077 0.0022 0.0015
Two parameters have very large variances, so can not be identified

– or look for massive standard errors for one or more parameters

Solutions for overparameterized models:

• Simplify the model, e.g. reparameterize θ1θ2 as a single parameter

• Put constraints on the parameters

• E.g., for Mtb you could:

– Make time effects follow a logistic regression

logit pi = log

(
pi

1− pi

)
= β0 + β1i

– Connect recapture and capture probabilities, also usually by a logistic

logit ci = ν + logit pi

Model Mh: allows each of the N individuals to have a different pi

• The capture history for five individuals:

Time
1 2 3 # animals probability
Y Y Y 1 p3

1

Y Y Y 1 p3
2

Y Y N 1 p2
3(1− p3)

N N N 1 (1− p4)3

N N N 1 (1− p5)3

• Sufficient statistics are the # captures and # missed for each of the Mt+1 animals seen
at least once

• There are Mt+1 sufficient statistics, but N+1 parameters

• Can’t estimate N without modeling pi or using a completely different approach (cov-
erage)
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Modeling pi using a Beta(a,b) distribution

• f(p|a, b) = Γ(a+b)
Γ(a)Γ(b)

pa−1(1− p)b−1

– Γ(x) is the gamma function

– Uniform(0,1) is Beta(1,1)

– Hand drawn pictures

– Key is that all are unimodal except when peaks are at 0 or 1

• mean: µp = E p = a
a+b

• variance: Var p = ab
(a+b)2(a+b+1)

= µp(1− µp) 1
a+b+1

• The approach:

– Estimate a and b from the capture histories of the Mt+1 observed individuals

– Assume all N individuals have capture probabilities from that Beta(a, b) distri-
bution

– Provides sufficient information to estimate N

• Ken Burnham worked on this model extensively in the 1980’s

• Great idea in theory, didn’t work in practice

• Problem is that capture probabilities are more complicated than can be modeled by a
Beta distribution

Pledger heterogeneity models (2000)

• For now, focus on Mh: no time or behavioural effects

• pi = probability individual i is captured on an occasion

• P[capture history | pi] = P [capture history | pi] =
∏t
j=1 p

Xij

i (1− pi)(1−Xij)

• If don’t know pi, then want the marginal probability

P[capture history] =
∫ 1

pi=0
f(capture history | pi)f(pi) d pi

• Burnham’s beta model used this idea with a beta distribution for f(pi)

– beta and binomial distributions “play nicely” together

– the integral has a analytical solution

• Shirley Pledger proposed a more flexible distribution for f(pi)
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• finite mixture model: pi has one of two values (could be 3 or more but 2 often sufficient)

f(pi) =

{
π1 with probability f1

π2 with probability f2 = 1− f1

• So, the marginal distribution is a sum, not an integral, because pi has only 2 values:

P[capture history] =
2∑

a=1

fa P[capture history|pa]

• for 2 components: 3 parameters for capture probability: f1, π1, π2.

– More parameters if more than 2 mixture components,

– e.g., for 3 components: f1, f2, π1, π2, π3

• Likelihood is (for 2 components):

L(N, fa, π1, π2 | {Xij}) =
N !

constant× (N −Mt+1)!

N∏
i=1

[
2∑

a=1

fa P[capture history|pa]
]

• lnL is not simple - includes log sum(stuff)

• Can generalize to include time and behavioural effects

Huggins model: relate pi to one or more covariates, Xi

• Logistic regression model: logit(pi) = log pi
1−pi = β0 + β1Xi

pi =
1

1 + e−(β0+β1Xi)

• Not fit using the “usual” logistic regression algorithms

– Only have data for individuals seen at least once - missing many of the 0’s

– Need to model P[capture history | captured at least once]

P[capture history | captured at least once] =
P[(capture history) & (captured at least once)]

P[captured at least once]

• P[capture history and captured at least once] = product of appropriate p or p and c
terms (usual expression)

• Define pij = P[capture individual i on occasion j]

• P[captured at least once] = 1 - P[never captured] = 1−∏k
j=1(1− pij)
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• Huggins incorporated time and behavioural responses by adding

– a unique value for each time

– First captures: note time-specific intercept

logit pij = β0j + β1Xi

– c (recapture probs) have a fixed relationship to p (first capture probs)

– Recaptures: the pij model + a consistent trap-happy or trap-shy effect, ν

logit cij = ν + β0j + β1Xi = ν + logit pij

• Provides a simple way to model c and p

• What about estimating N?

– N not in the likelihood

– need some other way to estimate it

Huggins model: estimating N

• Add up 1/P[seen at least once] for each observed animal

• (Horvitz-Thompson estimator: Population Total Y =
∑n
i=1 Yi/πi)

N̂ =
Mt+1∑
i=1

1

1−∏t
j=1(1− p̂ij)

• Can get a variance estimator (complicated, not illuminating)

Is Huggins N̂ a reasonable estimator?

• Prefer unbiased estimates.

– N̂ is a random variable.

– Would like E N̂ = N

– i.e., sometimes N̂ is too high, sometimes too low, but on average spot on

• Is N̂Huggins unbiased?

– Yes, if pij is known precisely

– Define pi(θ) = P[individual i captured at least once | parameters θ]

– Define Ci =

{
0 when individual not captured
1 when individual was captured

E N̂Huggins = E
Mt+1∑
i=1

1

pi(θ)
= E

N∑
i=1

Ci
pi(θ)

=
N∑
i=1

E Ci
pi(θ)

=
N∑
i=1

pi(θ)

pi(θ)
= N
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• 3rd step requires known pi(θ)

• In practice, pi(θ) is estimated, because coefficients in the models for pij and cij are
estimated

• bias is small so long as sufficient data to provide good estimates of pi(θ)

Sample Coverage (Chao heterogeneity estimators)

• Coverage: proportion of total capture probability associated with observed individuals

C =
Mt+1∑
i=1

pi I(seen at least once)∑N
i=1 pi

• Explanation / example in hand-written notes

• Notation:
p mean capture probability in the population
γ c.v. of capture probabilities in the population
n total # captures
fi # number of individuals seen i times, e.g.:
f1 # number seen only once
f2 # number seen twice, etc.

• Assume a particular model for the data (details in Chao & Lee 1992, 1994, not impor-
tant)
use to derive expected values

E Mt+1

E C
∼= N − n (1− p)n−1

E C
γ2

• Need to estimate C, p, and γ

• p:

– Have pi for observed individuals, but average is biased

– More likely to observe individuals with large pi

– p in the population can be estimated from f1: # individuals seen only once

N ∼=
E Mt+1

E C
+

E f1

E C
γ2

• γ: sample cv not so obviously biased

• C: an old estimator, from the 1950’s

Ĉ = 1− f1∑
i=1 ti fi
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– There is a bias corrected estimate, but really want unbiased estimates of 1/Ĉ and
γ2/Ĉ

• Putting the pieces together: applying the “plug-in” principle

N̂ =
Mt+1

Ĉ
+
f1

Ĉ
γ̂2
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